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Abstract !\atural frequencies and buckling loads of a simply supported shallow circular arch with
sufficiently small depth-to-radius ofcurvature ratIo (H R « I) subjected to initial axial tensile and/or
compressive forces are analysed. By using the method of power series expansion of displacement
components. a set offundamental dynamic equations ofa one-dimensional higher-order arch theory
for in-plane vibration problems of shallow circular arches is derived through Hamilton's principle.
Several sets of truncated approximate theories which can take into account the effects of both shear
deformations with depth changes and rotary inertia are applied to solve the eigenvalue problems of
an elastic arch. Convergence properties of the natural freq uency and the buckling load of simply
supported shallow circular arches are examined in detail. The present approximate theories can
predict the natural frequencies and buckling loads of shallow circular arches with smalliength-to
depth ratio L H more accurately compared with previously published results.

I I:--JTRODlCTlO,\

Although the vibration and stability problems of straight beams with shear deformations
have been well established, the same problems have not been so well investigated for curved
beams or arches. The arch theory may be extremely complicated with coupling between
bending and axial deformation modes in the context of the three-dimensional theory of
elasticity. As in the theories of straight beams. some simplifying assumptions have been
made in describing the deformation of arches so as to reduce the problem to one-dimensional
theory. The Euler-Bernoulli hypothesis of plane cross-sections remaining plane after defor
mation was introduced in the classical arch theory. In order approximately to account for
both transverse shear deformation and rotary inertia effects, the Timoshenko-type arch
theory can be derived by using a shear correction coefficient 1\2. This factor is introduced
to correct the contradictory shear stress distribution over the cross-section of the arch and
cannot be found within the assumption of the theory itself. Recently, a set of the fun
damental equations for slightly curved laminated composite beams of shallow curvatures
has been presented by Qatu (1992). For simply supported single-layer curved beams,
both the bending and axial frequencies have been obtained. Although the effects of shear
deformation and rotary inertia are neglected in the theory. these effects have been considered
in the second theory (Qatu. 1993) which deals with moderately thick laminated composite
curved beams. Only the bending frequencies for simply supported curved beams have been
presented by taking into account the first order effects of shear deformation and rotary
inertia. A comparison between the results obtained by using thin and moderately thick
curved beam equations has been made.

The finite element method has been used extensi\ely in the vibration problems of
curved beams or arches. A study of the vibrations of elastic circular arches was presented
by Wolf. Jr (1971). in which the effect of rotary inertia was included. but transverse shear
deformations were neglected. By taking into account the effects of rotary inertia and
transverse shear deformations. a Timoshenko beam finite clement which includes planar
rigid body motion capability was developed by Heppler (1992). It has been pointed out
that these effects become important for quite short arches with small subtended angles. A
strain-based curved beam finite element using Timoshenko's deep-beam formulation in a
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system of curvilinear coordinates, has been employed by Sabir et at. (1994) to analyse the
natural frequencies of circular arches. By assuming a linear variation of curvature, constant
circumferential direct strain and constant shear strain in the element, the effects of shear
deformations on the free vibration problem of circular arches have been demonstrated.

In order to introduce the effects of transverse shear deformations with thickness
changes and rotary inertia, refined higher-order theories of plates have been developed. As
an extension of the classical thin plate theory, applicability and reliability of the two
dimensional higher-order theory have been clarified in detail through the numerical results
of static boundary-value problems of an extremely thick plate (Matsunaga, 1986, 1992).
Natural frequencies and buckling loads of thick plates subjected to in-plane forces have
been analysed by using the two-dimensional higher-order plate theory (Matsunaga, 1994).
It can be said that two-dimensional higher-order plate theories are very useful for the static
and dynamic analyses of a thick plate as extended theories of the classical thin plate theory.
The same can be said of curved beams or arches. However, higher-order theories of arches
which take into account the complete effects of shear deformations and rotary inertia have
not been investigated.

This paper presents a one-dimensional higher-order theory of shallow circular arches
with small depth-to-radius of curvature ratio and small length-to-depth ratio which can
take into account the effects of both shear deformations with depth changes and rotary
inertia. Several sets of the governing equations of truncated approximate theories are
applied to the analysis of in-plane free vibration and stability problems of a simply sup
ported shallow circular arch subjected to axial forces. On the basis of the power series
expansions of displacement components, a fundamental set of dynamic equations of a one
dimensional higher-order arch theory for in-plane vibration problems of shallow circular
arches is derived through Hamilton's principle. Linear constitutive relations for an elastic
arch of isotropic materials are also derived in terms of the expanded displacement
components. The equations of motion of an arch subjected to initial axial forces are
also expressed in terms of the displacement components. Following the Navier solution
procedure, the displacement components are expanded into Fourier series that satisfy the
simply supported boundary conditions. The natural frequency of an arch subjected to axial
forces is obtained by solving the eigenvalue problem numerically and the buckling load is
determined when the natural frequency vanishes. The convergence properties of the present
numerical solutions are shown to be accurate for the natural frequencies and buckling loads
with respect to the order of approximate theories. A comparison of the natural frequencies
and buckling loads is also made with previously published results. The present results
obtained by various sets of approximate theories are considered to be accurate enough for
shallow circular arches with smalliength-to-depth ratio and can be regarded as the bench
mark data of the problem. It is noticed that the one-dimensional higher-order arch theory
in the present paper can predict the natural frequencies and buckling loads of such arches
more accurately when compared with previously published results.

2. FUNDAMENTAL EQUATIONS OF KINEMATICS OF A SHALLOW CIRCLLAR ARCH

Consider a shallow circular arch of arc length L as shown in Fig. I, having a thin
rectangular cross-section of depth H and width B which is assumed to be sufficiently small
relative to the depth. The radius of curvature R of the arch is assumed to be sufficiently
large relative to the depth (i.e. HI R « I). A polar coordinate system (x, y,'::-) is defined on
the central axis of the circular arch, where the x-axis is taken along the central axis with
the .v-axis in the width direction and the z-axis in the direction normal to the tangent to the
central axis. Assuming that the deformations of the arch take place in the x-z plane, the
dynamic displacement components of an arch in the x, y and z directions, respectively, can
be expressed as

u = u(x, z; t), l' = I·(X. z; t) = 0, It' = w(x, z; t). (1)

where t denotes time. The displacement components may be expanded into power series of
the normal coordinate z as follows:
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Fig I. Dimelblnns c1nd conrdinclte svstem fnr c1n c1rch subjected to axial force.
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where n = O. I, 2.. .. x .
Based on this expression of the displacement components, a set of the linear fun

damental equations of a one-dimensional higher-order arch theory can be summarized as
follows.

2.1. Strain·displacellwllt )'e/ations
Strain components may be expanded as follows.

)' I, L
'/..,- (J

(II)

- /.::\ L
11=0

(11)

". ~tl
/ x.:: "'" (3)

and strain-displacement relations can be written as (Yokoo and Matsunaga, 1974)

til) (1/ ~ I In l I II ~ I)

E" = U, - R Ir. ;:, = (II + I) Ir .
'''I I r 1"+ I) n-I (n) (n).}

". = . = '«n+lj U ---u+w,'- '.' : I, R ..\ , (4)

where a comma denotes partial differentiation with respect to the coordinate subscripts
that follow and an assumption H R « I is used in the present derivation.

2.2. Equations o!motioll and hOll/ufa)'.\' conditions
Under the assumption of plane strain or plane stress in the width direction, by intro

ducing stress components 6". r, = T, and 6. Hamilton's principle is applied to derive the
equations of dynamic equilibrium and natural boundary conditions of an arch. In order to
treat free vibration and stability problems of an arch subjected to axial stress (J~x which
distributes uniformly in the depth direction. additional work due to this stress which is
assumed to remain unchanged during vibrating and or buckling is taken into consideration.

The principle for the present problems may be expressed for an arbitrary time interval
t, to t: as follows:

where the overdot indicates partial differentiation with respect to time, p denotes the mass
density, d V the volume element. dS the element of area of the external bounding surface
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and (J~ and (J7 the prescribed components of the stress vector on the surface of an arch
which are expressed in terms of the prescribed stress components as follows:

(6)

where n, and no denote the components of the outward unit vector normal to the external
bounding surface of the arch.

By performing the variation as indicated in eqn (5), the equations of motion are
obtained as follows:

(1/) (tl) lll~-l) n-l (n) (II) f (m)

6u:N,-n Q +--"Q+p,=p I f(n+m+l)ii (forn~l)
R m= ()

10) 10) 1.101 101 ,01 (0) I. 1m)

6u :N,--"'Q+(Nou,),+P, = P I f(m+l)ii
R m~ 0

(III 1 lid (n'l In I) UI).r (m)

6\i":--N+Q,~n T +P=P If(n+m+l)~v (forn~l)
R m ~ °

(OJ 1 (0) (0) (0) (0) (0) X (m)

bw:RN+Q,+(Noll,L+Po=p If(m+l)w,
m = 0

where n, m = 0, I, 2, ... , Xc.

The stress resultants are defined as follows:

(7)

101

No = H(J~,.
''II f+1f 2

_ ,.,.11 ,.,.

Q - .. "e':' d.:.,
. H'2

(8)

Load terms measured per unit length of the central axis are expressed as

(II) (II)

p, = [I~:"j-~~;, Po = [(J7oz"j:+:ZL (9)

where the stress components marked with an asterisk denote the prescribed quantities on
the upper and lower surfaces of an arch and the following function is defined as

(k: even)

(k: odd),
(10)

where k is an integer.
The equations of boundary conditions on the upper and lower surfaces are expressed

as

and at the ends on the central axis as follows:

I,!I) III] (II) In)

II = u* or N = N*

(II) Ill) (II) (n)

II = \1'* or Q = Q*,

(11)

(12)

where n = 0, I. 2, ... , Xc and the quantities marked with an asterisk denote quantities
prescribed at the ends on the central axis of an arch.
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2.3. CO/lstiwtin: rc!atio/l.l
For elastic and isotropIc materials. the t\\o-dimL'nsional constitutive relations can be

written as

(13)

According to the assumption of plane stram ur plane stress in the width direction, the
coefficient I. is defined h~

(plane strain)

I, =
1 '-Ill,

~Il f/,
(plane stress).

( 14)

where Lame's constants II and I are dellned b~ Llsing )'oung"s modulus E and Poisson's
ratio v as follows:

L
II == . I,
, ~(I +1')

\E

(I-i--\')(I-~\)'
(15)

2.4. Stress resulta/lts in t('l'II/S oj the C\'jilIiUlcd disp!wclllcnt cOlllpo/le/lts
Stress resultants can he derived from eqns n·n and eqns (13) in terms of the expanded

displacement components.

"" r \ '''' ."
Q = n,L" LI1 'I(JI1+ I) I{

11/-- 1 un' ) l
R I{ -+ II 't 11 (/1 + 11/ + I)

i7~= ~ [I::',u-;)(IJ/ 11 II -1.(,'1{
"I (I l

where n. III = O. I. ~...

I '''''')lR II, J/(II+III+ I), (16)

2.5. Equatio/ls oj JI1otiO/1 III terllls ojlhc I'\'!iandcd displaccmcnt cOlllponents
The equations of motion can he expressed in terms of the expanded displacement

components by using eqns (16) as

JI1- I

R
I{ -t' II

1
,,,,)I

--p ii Jf(fI+m+ 1)

(OJ "{I ("""b u :"'~o L(2)1 + I.) "I{ , ~ \1 )+I.U/1+I) II" 1

I r " " 111- I "'" '1 "ni) , (0) (0) (0)

- RI1L(III.11 I{ R I{i-II ,-!Jii(!(I1I+I)+(Nou,L+p,=O
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I'll ' l{I l -(1"11 I(m)') - Im+ I iJ1511': I- (2{l + i.) U,--H', +;.(m+l) If
m-O R R

l (m+ 11 /11-1 (ml Iml J (ml}
+11 (m+l) u -R-~ U + 11'., .,-pM:' f(n+m+l)

l - ,m II - ((ml I Iml)J J In)
-n (2p+;.)(m+ I) 11' +;, U, - R 11' f(n+m) +Po = 0

(OJ J fI l -("'" I (ml')' - Im+ IIJ1511': I (211+;,) ,U, - - 11' +;,(m+ I) }j'

m-O ,R R

(forn ~ 1)

I ''I' ~ Ii nl - I ''I'! 1'''' J Iml} (0) (0) (0)
--i-PL(m+ I) U -R- U + H"',-Pi\" f(m+I)+(NowJ.,+Pz = O. (17)

2.6. Mth order approximate theor.\'
Since the fundamental equations mentioned above are complex, approximate theories

of various orders may be considered for the present problem. A set of the following
combination of displacement components for Mth (M ~ I) order approximate equations
is proposed,

~ _~/ I (1111

U = I u ::m,
'I) II

2Af- ]. (fill

H' = I 11' Zm.
111=0

(18)

where m = 0, I. 2. 3.... ,
The total number of the unknown displacement components is (4M -I). In the above

cases of M = I. an assumption of plane strains in the depth direction is inherently imposed.
Another set of the governing equations of the lowest order approximate theory (M = 1t)
is derived with the use of an assumption that the normal stress azz is zero. This theory
corresponds to the Timoshenko-type arch theory with the shear correction coefficient
K

2
= I, The normal strain in the depth direction is obtained from the last equation in eqn

(13) as

-I,
J; __ = -~~".~ f;.yyo

- 2p+l,
(19)

Under the assumption of plane state of stresses in the depth direction, the shear strain
1\0 must vanish through the depth of an arch and the lowest order approximate theory is
reduced to the classical arch theory.

3, FOURIER SERIES SOLUTlOl\ FOR A SIMPLY SUPPORTED CIRCULAR ARCH

A simply supported circular arch of thin rectangular cross-section subjected to axial
forces undergoing in-plane deformation is analysed for natural frequencies and buckling
loads.

The simply supported boundary conditions (12) can be expressed at the x-constant
points. x = 0 andy = L as

(Ii) (III

N = O. )\' = O.

For free vibration and buckling problems, load terms are set as follows:

till (II)

P, = Po = O.

(20)

(21)
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Since a circular arch is in a state of uniform stress, the axial forces are considered to
be constant during vibration and/or buckling. Following the Navier solution procedure,
displacement components that satisfy the equations of boundary conditions (20) may be
expressed as

(11.1

If
f. (II) rrr.Y
I If,COS 'e""

I L .

J (II) rrry
\1' = I II', sin - 'e 'l "

I L .
(22)

where the displacement mode number r = I. 2. 3.. .. J~. W denotes the circular frequency
and i the imaginary unit.

The equations of motion are rewritten in terms of the generalized displacement com-
In) In) . . .. ..

ponents If, and Wr • The dImenSIOnless natural frequency and the bucklIng load or the InItIal
axial force in the x direction for vibration problems are defined as follows:

11)1

n = (l)H.,,(pG). ;\ = BN II Pc. (23)

where G is the shear modulus and P, is the minimum buckling load for the bending problem
of a straight beam from the classical beam theory defined by

(24)

4. EIGENVALUE PROBLEM FOR IN-PLANE VIBRATION AI\D STABILITY OF SHALLOW
CIRCULAR ARCH

Equations (17) can be rewritten by collecting the coefficients for the generalized
displacements of any fixed value r. The generalized displacement vector {U} for the Mth
order approximate theory is expressed as

r' 1:\1 ], dJi I:: \f

: I ~.(L'} I = . If, •.. If, ; 1\, ... 1\ (25)

For free vibration problems. the equations of motion can be expressed as the following
eigenvalue problem:

(26)

where matrix [K] denotes the stiffness matrix which may contain the terms of the initial
axial forces and matrix [M] is the mass matrix.

For stability problems, the natural frequency is set to zero and the stability equation
can be expressed as the following eigenvalue problem:

([K] + i\[S)) {U: = n. (27)

where matrix [K] denotes the stiffness matrix and matrix [S] is the geometric-stiffness matrix
due to the axial force.

The power method is used to obtain the numerical solution of the eigenvalue problems.
Although all the eigenvalues and eigenvectors can be computed by this method, the domi
nant eigenvalue which corresponds to the minimum natural frequency and/or the critical
buckling load is much concerned.
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Table I (a). Comergence property of natural frequencies;

LH LR Q CAT TAT M= It M = 2 M= 3 M=4

2 0.00 Q, 1.1485 0.8626 0.8875 0.8693 0.8689
0 2.5328 25328 25328 2.5048 2.5024

11.111 Q, 1.147X 0.8612 0.8861 08690 0.8685
0, 25344 25.'41 25341 2.5059 2.5034

11.20 Q 1.1456 08569 0.8817 08679 0.8673
Q. 2.5393 ~. 53 7Y 2.5379 25090 2.5065

(UO Q 1.1420 08499 0.8745 0.8659 0.8653
Q 2.5473 25443 2.5443 25143 2.5118

0.40 Q 11 370 118402 0.8645 0.8632 0.8625
Q. 2.5584 25530 2.5530 2.5217 2.5190

0.00 0 o 1838 11.1727 o 1740 0.1730
Q: 1.0131 Ull31 1.0131 1.0116

025 Q, 01832 o 1710 0.1723 0.1724
Q. 1.0164 1.0163 1.0163 1.0147

050 Q, 0.1814 o 1661 o 1674 0.1708
Q: 1.0263 U)258 1.0258 1.0241

075 Q, 0.1786 o 1582 0.1594 0.1681
n 1.0425 1.0414 1.0414 1.0394

100 0, 0.1749 111477 0.1488 0.1641
Q 1.0647 1.0620 1.0626 1.0606

;SeeTable lib)

5. NLMERIC/\L EXAMPLES A:--JD RESULTS

5.1. Numerical examples
A simply supported shallow circular arch with small length-to-depth ratio L/Hand

sufficiently thin rectangular cross-sections subjected to initial axial tensile and/or com
pressive forces is analysed for the following parameters of the length-to-depth ratio

L H = L 2.4. 5.10,20. (28)

Since the curvature parameter is assumed to be HI R « I, the limit of this parameter is
taken to be H R = 0.2 (Qatu, 1993) and the length-to-radius of curvature ratio L/R is
varied from 0.0 to 1.0 in the present numerical examples. Poisson's ratio is fixed at v = 0.3.
All the numerical results are obtained for the case of plane stress in the width direction of
an arch and are shown in the dimensionless quantities.

5.2. Conl'ergence property O!SOllitiolls alld comparison with prerioilsl)' published results
Any arch theory is necessarily of an approximate character to provide a one-dimen

sional representation of an intrinsically three-dimensional phenomenon. In order to verify
the accuracy of the present results. convergence properties of the numerical solutions
according to the order of approximate theories are examined. It is noticed that the proper
order of the present approximate theories may be estimated according to the level of L/H
of the arch. Although the present sets of approximate theories can easily be applied to a
circular arch with large L. H. higher orders of the expanded one-dimensional theories may be
required to obtain reasonably accurate solutions for an arch with small LIB. Convergence
properties of the flrst two natural frequencies of an arch without initial axial forces and the
buckling loads of an arch subjected to axial compressive forces are examined in detail.

In Table I. the flrst two natural frequencies 0 1 and Oc and the first two buckling loads
AI and A c for the tlrst displacement mode r = I are compared with the solutions obtained
by the classical arch theory and the Timoshenko-type arch theory for several values of L/H
and L/ R. The lower natural frequency 0 1 and buckling load AI are for predominantly
bending modes with some shear deformation. whereas the upper frequency Oc and buckling
load A2 are for predominantly axial modes. It is noticed that the present results for M = I
S converge accurately enough within the present order of approximate theories. In the
following. only the numerical results for /'vi = 5 are discussed, which is considered to be
sufficient with respect to the accuracy of the solutions. In the first order approximate theory
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Table lib). Convergence property of buckling loads

LH LR \ CAT TAT H~ It \/=2 /14 = 3 M=4 M= 5

UOO .\, I.OUOU 11.6092 U6516 1J595~ 0.5939 05921 0.5912
.\ ·.\X6.H -U634 4.~614 4.114h 1.6.'44 3.4623 33758

o 10 .\ 099~7 11.6070 O.M92 1)5954 05934 0.5916 0.5906
.\ ·.\X696 4.8712 4.~714 4.1 I79 1.6373 H650 33785

11.20 \ 1).9949 0.6004 U6422 0593~ 0.5918 0.5900 0.5889
.\ 4.8882 4.8941 48lJ:'2 4.1n~ 1.6459 3.4731 3.3869

(I.1U \ 1I.9~n ()58lJ7 Uh.'O' IU911 0.5891 0.5872 0.5862
.\ 4.9191 4lJ128 49H~ 4144.' 1.6604 H867 HOO8

IJ.4U \ 1I.98UI 05751 lI.h147 IU87, 05853 0.5834 0.5823
\ 49622 49863 4.9897 416n -'.(,806 3.5057 1.4203

O.O() \ 1.0000 090h9 119212 O.lJ021 09020 09019
\ 30.3964 31)1964 31U9h4 29 484~ 28.7171 28.4227 28.2679

0.25 A, 0.99.'5 08891 1J90.' I o89M 0.8963 0.8961
A .,0.5953 '06124 30.6127 296657 28.8918 28.5949 28.4392

050 \, 0.9745 0.8378 08' 11) 08793 0.8790 0.8789
\ 11.1l)1~ .' 1.25~4 ~ 1.2599 302080 29A159 29.1115 28.9531

1175 \ 0.9444 1)75~3 07701 o85()7 U.8503 0.8502
\ .'2184_' .'2.32l) 1 32332 , .' I Illl) 102890 29.9722 29.8093

1.00 \ Ol)O54 IIh584 IIhh8h II 810:' 11.8101 0.8100
\ 31.5707 .'.'.8165 .-U.X2~O )~_J771 .,1.5108 31.1761 31.0069

teAT. classical arch tlieory . rAT. Tim~"hcnko-ty pc arch thelln (h 5 h). H= 1t. plane stress in depth
direction (Tinwshenko-type arch thellry : I, 1)

(/'vI = It)_ since the normal stress (J is made to be zero. the results correspond to those of
the Timoshenko-type arch theory with the shear correction coefficient 1\2 = I. For small
L H_ although the convergence property of the second buckling load for the predominantly
axial mode is not so good. the convergence properties of the other quantities are accurate
enough within the present order of approximate theories. In the following tables and figures.
except Figs 3(a_b). absolute values of the buckling loads are shown.

The flrst two natural frequencies of shallow circular arches with moderately small
length-to-depth ratio L 11 = 20 are compared directly \vith the previously published
results (Qatu_ 1(92) in Table 2(21) The form of dimensionless natural frequencies in
the table IS different from that of the lirst equation in eqn (23), I.e.
n, = wL 2

" (12p EH 2
). n, = wL.... (p E). Since the effects of shear deformation and rotary

inertia are neglected and only the stretching -bending coupling due to curvature has been
considered in Qatu's results_ slight differences of natural frequencies from the present results

Table 21a) ( l1mpamlln ,)1' the tlrst t\ll' natural frequcnue, \lItlt prni"Lbl\ published results. effects of the
thickness parameter (L II 2111

L R [It 4

0.00 nil) \)8696 ;9 A c~ SS.S~h 157.lJl- 24674-
Q· 'I 9.8~9.' 18S4S5 ~.~. r~O_" 1486440 225.3584
Q,,) 31416 6.~X12 '1A24·- 12.5h6 15.708-
Q: II 3 141.' 6.2S08 'I41hX I~.5470 15.6694

020 Q,,) 9.X496 llJ A'S i-\X)\l)h 157.89 246.72-

Q"I 'I.xOl)4 ~x.x~~r; X' 7< I, 148.6255 225.3405
(i'l) .' 1480 6.~XM 'I4~6'i 12568 - 15.709 -
Q~;I 1.1477 6.2840 9.41 Xl) 12.5486 15.6706

0.50 Q,) 9.7466 J9.~~~ i'\S.hl)l) 157 7B 246.60-
[l, II '!7041 3X.7~)6 X~.6_~llh 148 5~79 2~5.2465

Q,,) 3.1812 6.10.'2 l) ,·:L~X.~ 12576-- 15.716 -

Q:" 3.1 XOX 6.300h l),-l21)l.} 125568 15.6770
1.00 Q,) 9A01S Jl-<'\.J:'U xx3: I 15 7 39 - 246.21-

Q
'II 9.' Ix4 18.1'48 X~,~()L)i\ 148.17X6 224.910~

(t" 3.1l)7~ 6..;629 'JA7X6 12607 15.741-
[l: ;1 3.1964 6.J~05 'IA6'111 12.5859 15.7000

t Q ]() and Q,(). Qatu·, result:; (llJl)~ I Q, 'I and Q,,/, pre,en! results (,\1 ~ 5) : dimensionless frequencies.
Q , = ('JL\ (121' f:H').Q, I·IL, II' El
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Table 2(b) Comparison of the first two natural frequencies with previously published results: effects of the
curvature parameter (LI R = 1.0)

Displacement mode: r

LH n+ 2 4+

fi,,) 8.0874 32122 - 63.760 - 98.806-
OIl! 88119 31.9473 61.7087 94.1744 127.6434

10 nil) 8.3546 36.153 78546- 131.57 -

nil' 9.2083 36.6930 77.9959 128.9675 186.3153
20 nil) 84270 37504- 84.790- 148.58 -

niH 9.3184 38.3548 85.2698 148.1786 224.9102
50 nil) 84478 37.919-- 86.909- 155.06-

niH 93502 38.8734 87.8083 155.7889 242.3119
100 fi,,) 84508 37.980- 87229- 155.07-

01_1t 9.3547 38.9497 88.1948 157.0009 245.2352

tnlQ' Qatu's results (1993) : n, H. present results (M = 5) : dimensionless frequencies, nl = wL\/(l2p/EH2
).

are noticed. For the case oflarger length- to-depth ratio L/H = 100, the difference of natural
frequencies becomes smaller.

In Table 2(b), a similar comparison of the lowest natural frequency nt of shallow
circular arches with the largest length-to-radius of curvature ratio L/R = 1.0 is also made
with Qatu's results (1993) which were obtained by using moderately thick deep beam
theory. Although the difference between shallow and deep beam theories is small for higher
frequencies, a considerable difference for the fundamental frequency (r = 1) is noticed, For
shallower cases of L!R « 1, this difference in natural frequencies becomes smaller. It may
be said that the effect of the curvature parameter L/R is much more than that of the
thickness parameter L!H upon the fundamental frequency.

5.3. NaTuraljrc(/uencics ojshallOlI" circular arches Il"ithouT axialforces
The first two natural frequencies obtained by the present analysis are shown in Table

3 for all the values of L! H and the first three displacement modes. The results are obtained
for M = 5 with sufficient numerical accuracy and can be regarded as the benchmark data
of natural frequencies of shallow circular arches with small L/H. Natural frequencies
increase monotonically with increasing number of displacement modes.

5.4. Buckling loads ojshullOlj' circular arches subjcctcd To axialforces
For a simply supported arch with axial compressive force, Figs 2(a,b) show the

variation of the buckling loads with respect to displacement modes. The lower curve with
the open circle shows the buckling loads for a predominantly bending mode with some
shear deformation, whereas the upper curve with the open square shows those for a
predominantly axial mode. As shown in Figs 2(a,b), the buckling loads for a predominantly
axial mode decrease monotonically from those for r = I and then increase slightly. The
lower buckling loads for a predominantly bending mode increase within lower displacement
modes but decrease with higher displacement modes.

The buckling loads for the first three displacement modes and a higher displacement
mode r = 500 are also shown in Table 4 for all values of L/H. The results are obtained for
M = 5 with sufficient numerical accuracy and can be regarded as the benchmark data of
buckling loads of shallow circular arches with small L! H. It is seen that the first displacement
mode gives the critical buckling load for large L/ H. However, for small L/H the critical
buckling load does not correspond to lower displacement modes but to higher ones (for
instance, r = 500). For this feature, limit points of the length-to-depth ratio L/H = 3.191
to 2.980 according to the length-to-radius of curvature ratio L/R = 0.0 to 1.0 appear in the
present examples. The buckling loads of shallow circular arches for higher displacement
modes approach those of straight beams.
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Table 3. The first two natural frequencIes of a shallow circular arch

Displacement mode' r Displacement mode. r
----------

L;H LR Q 2 Llf L R Q 2

0.00 Q, 2.3791 5.4910 B5122 0.00 Q, 0.1730 0.6021 1.1546
Q, 4.4428 63092 B8123 Q: 1.0116 2.0122 2.9792

0.05 Q, 2.3790 5.491., B5127 ll.2S Q, 01724 0.6017 1.1543
Q, 4.4425 6.3091 B.B 127 Q. 1.0147 2.0136 2.9799

0.10 Q, 2.3785 5.491 B 8.5132 1150 Q, 0.1708 0.6003 1.1532
Q, 4.4414 6.3087 BB 139 Q: 1.0240 2.0179 2.9821

0.15 Q, 23777 5.4926 85139 0. 7 :' Q, 0.1680 0.5980 1.1514
Q, 4.4396 63082 88159 Q, 1.0394 2.0251 2.9858

0.20 Q, 2.3766 5.4935 8.5147 1.00 Q, 0.1641 0.5948 1.1490
Q, 4.4371 63074 88186 Q: 1.0606 2.0350 2.9909

2 0.00 Q, 0.8689 23791 39447 10 0.00 Q, 0.0452 0.1730 0.3651
Q, 2.5024 4.4428 53022 Q, 0.5064 1.0116 1.5142

0.10 Q, 0.8685 2.3790 3.9448 025 Q, 0.0451 0.1728 0.3649
Q, 2.5034 4.4425 5.3019 Q. 05080 1.0124 1.5147

0.20 Q, 0.8673 23785 3.9449 050 Q, 0.0446 0.1724 03646
Q, 2.5065 4.4414 5.3009 Q. 0.5127 1.0147 1.5162

0.30 Q, 0.8652 2.3777 .'9451 0, "l~ Q, 0.0439 O. I 718 0.3639
Q, 2.5118 4.4396 5.2992 Q, 0.5205 1.0186 1.5187

0.40 Q, 0.8624 2.3766 3.9453 I.IH) Q. 0.0429 o 1708 03631
Q, 2.5190 4.4371 5.2969 Q, 05313 1.0240 1.5222

4 0.00 Q, 0.2622 0.8689 1.6042 20 000 Q 0.0114 0.0452 0.0998
Q, I.2633 2.5024 3.6443 Q, 0.2533 05064 0.7592

0.20 Q, 0.2617 0.8685 16039 ().~~ Q 0.0114 0.0452 0.0998
Q, I.2658 2.5034 H446 Q, 0.2541 0.5068 0.7595

0.40 Q, 0.2602 0.8673 1.6031 0.50 Q 0.0113 0.0451 0.0996
Q, 1.2732 2.5065 H45:' Q: 02564 0.5080 0.7603

0.60 Q, 0.2575 0.8652 1.6017 O.!:\ Q (l.0111 0.0449 0.0995
Q, I.2854 25118 3.6469 Q: 0.2604 0.5100 0.7616

0.80 Q, 0.2537 08624 1.5998 [(HI D (l.0108 0.0446 00992
Q, 1.3023 2.5190 H489 D. 0.2658 0.5127 0.7634

Table 4. The first two buckling loads of a shallow circular arch

Displacement mode: ,. Displacement mode: ,.

L;H L!R A 500 LH L R 500

0.00 A, 0.2517 0.2348 0.1 B08 0.0772 000 .\ 090lB 27789 4.4881 1.9422
1\, 0.5086 0.3183 02655 0.2206 \ 28.2679 23.5599 18.8480 5.5106

0.05 1\, 0.2517 0.2347 o 180B 0.0772 025 \ 0.8961 2.7746 4.4854 1.9422
A, 0.5087 0.3182 02655 02206 \ 28.4392 23.5921 18.8581 5.5106

0.10 1\, 0.2516 0.2347 0.1808 0.0772 0.50 \ 08789 2.7618 4.4773 1.9422
1\, 0.5088 0.3182 0.2654 0.2206 .\: 28.9531 23.6888 18.8883 5.5106

0.15 1\, 0.2514 0.2346 o 180B 0.0772 0.7' \ 0.8502 2.7404 4.4636 1.9422
A, O.50n 0.3181 0.2653 0.2206 \. 29.8093 23.8500 18.9388 55106

0.20 1\, 0.2511 0.2345 0.1808 0.0772 100 \ 0.8099 2.7104 4.4444 1.9422
1\, 0.5112 0.3190 0.2658 0.2206 '\' 31.0069 24.0758 19.0096 5.5106

2 0.00 1\, 0.5912 1.0069 10414 0.3092 10 0.00 \ 0.9736 3.6073 7.2239 7.8886
A, 3.3758 2.0344 15048 0.8813 \ 119.3187 113.0715 104.2018 21.9992

0.10 A, 0.5906 1.0068 1.0413 (U092 O.~) \ 09674 3.6015 7.2189 7.8885
A, 3.3785 2.0346 1.5048 0.8823 \ 120.0656 113.2429 104.2688 21.9992

0.20 A, 0.5889 1.0063 1.0410 03092 0.50 A, 0.9488 3.5843 7.2037 7.8885
1\, 3.3869 2.0354 1.5047 0.8813 A: 1223062 113.7569 104.4697 21.9992

0.30 A, 0.5862 1.0055 1.0406 0.3092 0. 7, A, 0.9179 3.5557 7.1784 7.8884
A, 3.4008 2.0366 1.5047 0.8823 A: 1260398 114.6136 104.8045 21.9992

0.40 A, 0.5823 1.0044 1.0399 (1'092 1.00 .\, 0.8747 3.5155 7.1429 7.8884
A, 3.4203 2.0384 1.5047 0.8823 .\: 131.2652 115.8124 105.2733 21.9992

4 0.00 A, 0.8544 2.3646 34613 1.2404 20 0.00 ,\, 09933 3.8942 8.4813 328711
A, 17.4185 13.5031 102537 35279 \ 4840376 477.2748 466.4784 877299

0.20 A, 0.8510 2.3624 ,.4602 1.2404 0.2:' ,\, 09870 3.8881 B.4753 32.8709
A, 17.4846 13.5142 10.256B 3.5279 :\: 487.0938 478.0217 466.7983 87.7299

0.40 A, 0.8405 2.3558 34567 1.2404 0.50 A, 09681 3.8695 B.4573 32.8706
A, 17.6829 13.5475 102662 3.5279 \: 496.2623 480.2625 467.7584 87.7299

0.60 A, 0.8232 2.3447 3.450B 4.0221 0. 7' '\, 09366 3.8386 8.4274 32.8704
A, 18.0132 13.6032 10.2B 17 3.5279 ,\ 5115424 483.9969 469.3584 87.7298

0.80 A, 0.7988 2.3291 34424 1.2404 1.00 \, OB926 3.7954 8.3854 32.8703
A, 18.4755 13.6812 103036 3.5279 \: ).12.9327 489.2248 471.59B2 87.7298
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5.5. Naturalji'equencies 0/.\1/(/1/(1\1' circulal' archeI subjected to initial axialjorees
The first two natural frequencies of shallow circular arches subjected to axial forces

are plotted with respect to the initial axial forces in Figs 3(a,b). The figures show the effects
of initial axial forces on the frequency curves for r = 1. When the natural frequencies go to
zero, the initial axial forces reduce to the buckling loads of the arch.

6 DISClSSIO,\ A"-D CONCLUSIOl\S

Beyond the limits of applicability of the existing arch theories, various orders of the
expanded approximate theories have been applied to analyse the in-plane vibration and
stability problems of a simply supported shallow circular arch with small L!Hand
sufficiently small H;R subjected to axial force.

The following conclusions may be drawn from the present analysis.
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(I) In order to verify the accuracy of the present results, convergence properties of
the numerical solutions according to the order of approximate theories are examined.
Convergence properties of the first two natural frequencies and buckling loads for a simply
supported shallow circular arch without axial force are examined in detail. An estimation
of the approximate order of the governing equations may be concluded according to L/H
of the arch. The present results obtained for M = 5 are considered to be accurate enough
for arches with small L H and can be regarded as the benchmark data of the problem.

It is found that the one-dimensional higher-order arch theory in the present paper can
predict the natural frequencies and buckling loads of a shallow circular arch with small
L;H and sufficiently small H R more accurately when compared with previously published
results.

(2) The first two natural frequencies of a simply supported shallow circular arch
subjected to axial tensile and.or compressive forces have been obtained for all values of
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L H and several displacement modes. The first two natural frequencies of shallow circular
arches subjected to axial forces are also plotted against the initial axial forces for the first
displacement mode. When the natural frequencies go to zero, the initial axial forces reduce
to the buckling loads of the arch.

For arches with the length-to-depth ratio L H larger than a specific value of about
3.19, the critical buckling load appears at the first displacement mode r = 1. However, for
arches with smaller L/H, lower buckling loads appear at higher displacement modes.

(3) The present one-dimensional approximate theories may require a larger value of
M for shallow arches with smaller values of L! H to ensure the numerical accuracy of the
results. For the present range of L! H, reasonably accurate numerical solutions are obtained
for Al = 2-5. It can be said that the present one-dimensional higher-order arch theory,
which can take into account the effects of both shear deformations with depth changes and
rotary inertia, is very effective for the in-plane vibration and stability analyses of a shallow
circular arch as an extended theory of the Timoshenko-type arch theory and the classical
arch theory.
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