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Abstract-- Natural frequencies and buckling loads ot a simply supported shallow circular arch with
sufficiently small depth-to-radius of curvature ratio (H R « 1) subjected to initial axial tensile and/or
compressive forces are analysed. By using the method of power series expansion of displacement
components. a set of fundamental dynamic equations of a one-dimensional higher-order arch theory
for in-plane vibration problems of shallow circular arches is derived through Hamilton's principle.
Several sets of truncated approximate theories which can take into account the effects of both shear
deformations with depth changes and rotary inertia are applied to solve the eigenvalue problems of
an elastic arch. Convergence properties of the natural frequency and the buckling load of simply
supported shallow circular arches are examined in detail. The present approximate theories can
predict the natural frequencies and buckling loads of shallow circular arches with small length-to-
depth ratio L H more accurately compared with previously published results.

1. INTRODUCTION

Although the vibration and stability problems of straight beams with shear deformations
have been well established, the same problems have not been so well investigated for curved
beams or arches. The arch theory may be extremely complicated with coupling between
bending and axial deformation modes in the context of the three-dimensional theory of
elasticity. As in the theories of straight beams. some simplifying assumptions have been
made in describing the deformation of arches so as to reduce the problem to one-dimensional
theory. The Euler—Bernoulli hypothesis of plane cross-sections remaining plane after defor-
mation was introduced in the classical arch theory. In order approximately to account for
both transverse shear detformation and rotary inertia effects, the Timoshenko-type arch
theory can be derived by using a shear correction coefficient x°. This factor is introduced
to correct the contradictory shear stress distribution over the cross-section of the arch and
cannot be found within the assumption of the theory itself. Recently, a set of the fun-
damental equations for slightly curved laminated composite beams of shallow curvatures
has been presented by Qatu (1992). For simply supported single-layer curved beams,
both the bending and axial frequencies have been obtained. Although the effects of shear
deformation and rotary inertia are neglected in the theory. these effects have been considered
in the second theory (Qatu. 1993) which deals with moderately thick laminated composite
curved beams. Only the bending frequencies for simply supported curved beams have been
presented by taking into account the first order effects of shear deformation and rotary
inertia. A comparison between the results obtained by using thin and moderately thick
curved beam equations has been made.

The finite element method has been used extensively in the vibration problems of
curved beams or arches. A study of the vibrations of elastic circular arches was presented
by Wolf. Jr (1971). in which the effect of rotary inertia was included. but transverse shear
deformations were neglected. By taking into account the effects of rotary inertia and
transverse shear deformations, a Timoshenko beam finite element which includes planar
rigid body motion capability was developed by Heppler (1992). It has been pointed out
that these effects become important for quite short arches with small subtended angles. A
strain-based curved beam finite element. using Timoshenko’s deep-beam formulation in a
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system of curvilinear coordinates, has been employed by Sabir et al. (1994) to analyse the
natural frequencies of circular arches. By assuming a linear variation of curvature, constant
circumferential direct strain and constant shear strain in the element, the effects of shear
deformations on the free vibration problem of circular arches have been demonstrated.

In order to introduce the effects of transverse shear deformations with thickness
changes and rotary inertia, refined higher-order theories of plates have been developed. As
an extension of the classical thin plate theory, applicability and reliability of the two-
dimensional higher-order theory have been clarified in detail through the numerical results
of static boundary-value problems of an extremely thick plate (Matsunaga, 1986, 1992).
Natural frequencies and buckling loads of thick plates subjected to in-plane forces have
been analysed by using the two-dimensional higher-order plate theory (Matsunaga, 1994).
[t can be said that two-dimensional higher-order plate theories are very useful for the static
and dynamic analyses of a thick plate as extended theories of the classical thin plate theory.
The same can be said of curved beams or arches. However, higher-order theories of arches
which take into account the complete effects of shear deformations and rotary inertia have
not been investigated.

This paper presents a one-dimensional higher-order theory of shallow circular arches
with small depth-to-radius of curvature ratio and small length-to-depth ratio which can
take into account the effects of both shear deformations with depth changes and rotary
inertia. Several sets of the governing equations of truncated approximate theories are
applied to the analysis of in-plane free vibration and stability problems of a simply sup-
ported shallow circular arch subjected to axial forces. On the basis of the power series
expansions of displacement components, a fundamental set of dynamic equations of a one-
dimensional higher-order arch theory for in-plane vibration problems of shallow circular
arches is derived through Hamilton’s principle. Linear constitutive relations for an elastic
arch of isotropic materials are also derived in terms of the expanded displacement
components. The equations of motion of an arch subjected to initial axial forces are
also expressed in terms of the displacement components. Following the Navier solution
procedure, the displacement components are expanded into Fourier series that satisfy the
simply supported boundary conditions. The natural frequency of an arch subjected to axial
forces is obtained by solving the eigenvalue problem numerically and the buckling load is
determined when the natural frequency vanishes. The convergence properties of the present
numerical solutions are shown to be accurate for the natural frequencies and buckling loads
with respect to the order of approximate theories. A comparison of the natural frequencies
and buckling loads is also made with previously published results. The present results
obtained by various sets of approximate theories are considered to be accurate enough for
shallow circular arches with small length-to-depth ratio and can be regarded as the bench-
mark data of the problem. It is noticed that the one-dimensional higher-order arch theory
in the present paper can predict the natural frequencies and buckling loads of such arches
more accurately when compared with previously published results.

2. FUNDAMENTAL EQUATIONS OF KINEMATICS OF A SHALLOW CIRCULAR ARCH

Consider a shallow circular arch of arc length L as shown in Fig. 1, having a thin
rectangular cross-section of depth H and width B which is assumed to be sufficiently small
relative to the depth. The radius of curvature R of the arch is assumed to be sufficiently
large relative to the depth (i.e. H/R « 1). A polar coordinate system (x, y,z) is defined on
the central axis of the circular arch, where the x-axis is taken along the central axis with
the y-axis in the width direction and the z-axis in the direction normal to the tangent to the
central axis. Assuming that the deformations of the arch take place in the x~z plane, the
dynamic displacement components of an arch in the x, v and = directions, respectively, can
be expressed as

u=su(x,z;0), r=vxz;)=0 w=w(xz;1), )

where 7 denotes time. The displacement components may be expanded into power series of
the normal coordinate z as follows :
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= E u'ow= Wz, (2)

Based on this expression of the displacement components, a set of the linear fun-
damental equations of a one-dimensional higher-order arch theory can be summarized as
follows.

2.1. Strain--displacement relations
Strain components may be expanded as follows

4 [ o) . (n)
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and strain—displacement relations can be written as (Yokoo and Matsunaga, 1974)
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where a comma denotes partial differentiation with respect to the coordinate subscripts
that follow and an assumption H. R « [ is used in the present derivation.

2.2. Equations of motion and houndary conditions

Under the assumption of plane strain or plane stress in the width direction, by intro-
ducing stress components ... .. = 7. and ¢_.. Hamilton’s principle is applied to derive the
equations of dynamic equilibrium and natural boundary conditions of an arch. In order to
treat free vibration and stability problems of an arch subjected to axial stress ¢?, which
distributes uniformly in the depth direction. additional work due to this stress which is
assumed to remain unchanged during vibrating and or buckling is taken into consideration.

The principle for the present problems may be expressed for an arbitrary time interval
t, to t- as follows :

[
f I: [ (0,06, +21..07 .+ 0. e~ piiou— miow) d T
noLJe

" T 0y (i ’”
+ | ol u du +w dw )dh— (Uf5“+0f5"’)d5:|d’ =0. (5

! v S

where the overdot indicates partial differentiation with respect to time, p denotes the mass
density. d¥ the volume element. dS the element of area of the external bounding surface
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and o¥ and o* the prescribed components of the stress vector on the surface of an arch
which are expressed in terms of the prescribed stress components as follows :

oF = not tntk. of=nak4nok, )

where n, and n. denote the components of the outward unit vector normal to the external
bounding surface of the arch.

By performing the variation as indicated in eqn (5), the equations of motion are
obtained as follows:

() {m =1} n_l(n] in) {m)
Su:N,—n Q % O+p.=p Z fin+m+1)a  (forn=1)

o= 0

0y 1.0 () (0)

ou: _—~Q+(N.)u Jetpo=p Z f(m+l)u

m=0

(o 11») (m o iy (m)
dw: —RN-’:-Q —n T +p.=p Z fin+m+1Hw (forn=1)

m=0
() 1(0; () (0 (0 0 (m)

Wi e N+Q +(Nyw ) +p.=p S fm+1)i, Q)

m=10

wheren, m=10,1,2..... o
The stress resultants are defined as follows :

(0) n -H2 () +H 2 ) +H2
Ny=Hgl.. N= g.2"dz. Q= t.2'dz, T= o..z'dz.  (8)

- H2 -H:2 ~H 2

Load terms measured per unit length of the central axis are expressed as

) (n

R O R A L UL 2 €)

where the stress components marked with an asterisk denote the prescribed quantities on
the upper and lower surfaces of an arch and the following function is defined as

0 (k:even)

+H 2 l/Hk
1\ — k-t g. o[22 (11 =< 2 k
ﬂm_fm- ¢—k@)u<ln— EG@ oddy, (0

where & 1s an integer.

The equations of boundary conditions on the upper and lower surfaces are expressed
as

— (11)
and at the ends on the central axis as follows :
(23] ) ) (n)

w=u* or N=N* (12)

i) () (n) {n)

w=wu¥* or Q=0Q%

where n =0, 1. 2,..., x and the quantities marked with an asterisk denote quantities
prescribed at the ends on the central axis of an arch.
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2.3. Constitutive relations

For elastic and isotropic materials. the two-dimensional constitutive relations can be
written as

O =208~ e da . To= e L6 = Qe+ A6, &) (13)

According to the assumption of plane strain or plane stress in the width direction, the
coefficient / 1s defined by

/ (plane strain)
;o= Qs (14)

- (plane stress).
2t P

where Lamé’s constants g and 7 are defined by using Young's modulus £ and Poisson’s
ratio v as follows:

I . vE (15)
= . /= .
21+ (L+v)(1—2v)
2.4, Stress resultants in terms of the expanded displacement components

Stress resultants can be derived trom eqns (8) and egns (13) in terms of the expanded
displacement components.

() ; i | R _ i 1

N = Z Qu+ 00w - R W )+).(/11+ 1y w ]_I'(n+m+1)
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(o & - _ I A ] IR

T= 35 | (2u=2m+1 v/(u R )}/(/1+in+l). (16)
where n.m=0.1.2..... s

2.5. Equations of motion in terms of the expanded displacement components

The equations of motion can be expressed in terms of the expanded displacement
components by using eqns (16) as
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2.6. Mth order approximate theory

Since the fundamental equations mentioned above are complex, approximate theories
of various orders may be considered for the present problem. A set of the following
combination of displacement components for Mth (M = 1) order approximate equations
is proposed.

M 2M- 2 (m)
u= Y u w= )Y w (18)

w0 =0

where m =0, 1.2,3,. ...

The total number of the unknown displacement components is (4M —1). In the above
cases of M = 1, an assumption of plane strains in the depth direction is inherently imposed.
Another set of the governing equations of the lowest order approximate theory (M = 17)
is derived with the use of an assumption that the normal stress o,, is zero. This theory
corresponds to the Timoshenko-type arch theory with the shear correction coefficient
k* = 1. The normal strain in the depth direction is obtained from the last equation in eqn
(13) as

—

L. = zlu—;/::b\\ (19)

Under the assumption of plane state of stresses in the depth direction, the shear strain
+,- must vanish through the depth of an arch and the lowest order approximate theory is
reduced to the classical arch theory.

3. FOURIER SERIES SOLUTION FOR A SIMPLY SUPPORTED CIRCULAR ARCH

A simply supported circular arch of thin rectangular cross-section subjected to axial
forces undergoing in-plane deformation is analysed for natural frequencies and buckling
loads.

The simply supported boundary conditions (12) can be expressed at the x-constant
points, x = 0 and x = L as

1) (m

N=0, w=0 (20)

For free vibration and buckling problems, load terms are set as follows :

1] (n)

p.=p.=0. @1)
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Since a circular arch is in a state of uniform stress, the axial forces are considered to
be constant during vibration and;or buckling. Following the Navier solution procedure,
displacement components that satisfy the equations of boundary conditions (20) may be
expressed as

Q] s (n) FUX (7] [£22] . Fx
uo= Y ucos el =) o sin- e, (22)
ot L o L
where the displacement mode number r = 1. 2. 3.... | = . & denotes the circular frequency

and i the imaginary unit.

The equations of motion are rewritten in terms of the generalized displacement com-
ponents (LT and ffi The dimensionless natural frequency and the buckling load or the initial
axial force in the v direction for vibration problems are defined as follows

i

Q=0wHi(pG). A=BN,P. (23)

where G is the shear modulus and P_ is the minimum buckling load for the bending problem
of a straight beam from the classical beam theory defined by

G=E2(1+v)y. P.=nFE[L". [=BH" 12 (24)

4. EIGENVALUE PROBLEM FOR IN-PLANE VIBRATION AND STABILITY OF SHALLOW
CIRCULAR ARCH

Equations (17) can be rewritten by collecting the coefficients for the generalized
displacements of any fixed value r. The generalized displacement vector {U} for the Mth
order approximate theory is expressed as

1) (23 1 [N (2822
T _ o .
Ui =<uoow, w W, (25)

For free vibration problems, the equations of motion can be expressed as the following
eigenvalue problem :

([K]-Q°[M}) U] = 0. (26)

where matrix [K] denotes the stiffness matrix which may contain the terms of the initial
axial forces and matrix [M] is the mass matrix.

For stability problems, the natural frequency is set to zero and the stability equation
can be expressed as the following eigenvalue problem :

([K] + A[Sh (U} = 0. 27)

where matrix [K] denotes the stiffness matrix and matrix [S] is the geometric-stiffness matrix
due to the axial force.

The power method is used to obtain the numerical solution of the eigenvalue problems.
Although all the eigenvalues and eigenvectors can be computed by this method, the domi-
nant eigenvalue which corresponds to the minimum natural frequency and/or the critical
buckling load is much concerned.
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Table lia). Convergence property of natural frequencies}

LiH L-R Q CAT TAT M=1t M=2 M=3 M=4

2 0.00 Q, 1.1485 0.8626 0.8875 0.8693 0.8689 “—
Q. 25328 2532 25328 2.5048 2.5024 —

0.10 Q, 1.1478 0.8612 0.88601 0.8690 0.8685 —

Q. 2.5344 2.5341 2.5341 2.5059 2.5034 =

0.20 Q 1.1456 0.8569 0.8817 0.8679 0.8673 —

Q. 2.5393 2.8379 2.5379 2.5090 2.5065 —

0.30 Q 1.1420 0.8499 0.8745 0.8659 0.8653 -

Q. 2.5473 2.5443 2.5443 2.5143 25118 -

(.40 Q 1.1370 0.8402 (.8645 0.8632 0.8625 —

Q. 2.5584 25530 2.5530 2.5217 2.5190 -

5 0.00 Q 0.1838 01727 0.1740 0.1730 = «
Q. 1.0131 1.0131 1.0131 1.0116 « -

0.25 Q, 0.1832 01710 0.1723 0.1724 = —

Q- 1.0164 1.0163 1.0163 1.0147 — -

0.50 Q 0.1814 0.1661 0.1674 0.1708 — “—

Q. 1.0263 1.0258 1.0258 1.0241 “ “—

0.75 Q 0.1786 01582 0.1594 0.1681 — «

Q. 1.0425 1.0414 1.0414 1.039%4 - —

1.00 Q 0.1749 0.1477 0.1488 0.1641 = «

Q. 1.0647 1.0626 1.0626 1.0606 - «

+See Table 1(b).

5. NUMERICAL EXAMPLES AND RESULTS

5.1, Numerical examples

A simply supported shallow circular arch with small length-to-depth ratio L/H and
sufficiently thin rectangular cross-sections subjected to initial axial tensile and/or com-
pressive forces is analysed for the following parameters of the length-to-depth ratio

L H=1.2.45.1020. (28)

Since the curvature parameter is assumed to be H/R « 1, the limit of this parameter is
taken to be H R = 0.2 (Qatu, 1993) and the length-to-radius of curvature ratio L/R is
varied from 0.0 to 1.0 in the present numerical examples. Poisson’s ratio is fixed at v = 0.3.
All the numerical results are obtained for the case of plane stress in the width direction of
an arch and are shown in the dimensionless quantities.

5.2. Convergence property of solutions and comparison with previously published results

Any arch theory is necessarily of an approximate character to provide a one-dimen-
sional representation of an intrinsically three-dimensional phenomenon. In order to verify
the accuracy of the present results, convergence properties of the numerical solutions
according to the order of approximate theories are examined. It is noticed that the proper
order of the present approximate theories may be estimated according to the level of L/H
of the arch. Although the present sets of approximate theories can easily be applied to a
circular arch with large L/ H. higher orders of the expanded one-dimensional theories may be
required to obtain reasonably accurate solutions for an arch with small 2./ H. Convergence
properties of the first two natural frequencies of an arch without initial axial forces and the
buckling loads of an arch subjected 10 axial compressive forces are examined in detail.

In Table 1. the first two natural frequencies Q, and Q. and the first two buckling loads
A, and A, for the first displacement mode r = | are compared with the solutions obtained
by the classical arch theory and the Timoshenko-type arch theory for several values of L/H
and L;R. The lower natural frequency Q, and buckling load A, are for predominantly
bending modes with some shear deformation, whereas the upper frequency €, and buckling
load A, are for predominantly axial modes. It is noticed that the present results for M = -
5 converge accurately enough within the present order of approximate theories. In the
following, only the numerical results for M = 5 are discussed, which is considered to be
sufficient with respect to the accuracy of the solutions. In the first order approximate theory
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Table t(b). Convergence property ot buckling loads

LH LR A CAT TAT M= 1% =2 M =3 M=4 M=>5
2 0.00 A 1.0000 0.6092 0.6516 1).3938 0.3939 0.5921 0.5912
AL 18634 18634 4. 8634 11146 16344 3.4623 3.3758
0.10 A 0.9987 0.6070 0.6492 1).5954 0.3934 0.5916 0.5906
AL 3.8696 38712 48714 41179 31.6373 3.4650 3.3785
0.20 A 0.9949 0.6004 0.6422 05938 0.5918 0.5900 0.5889
Al 4.88&2 4.8943 4.8952 41278 3.6459 3.4731 3.3869
0.30 A (.9887 0.5897 0.6303 0.3911 0.5891 0.5872 0.5862
A 19191 49328 49348 41442 3.6604 3.4867 3.4008
0.40 A 0.9%01 0.5751 0.6147 0.3872 0.3853 0.5834 0.5823
Al 49622 4.9863 4.9897 41673 3.6806 3.5057 3.4203
5 0.00 A 1.0000 0.9069 09212 09021 0.9020 0.9019 “—
A 30,3964 30.3964 30).3964 29 484% 28.7171 28.4227 28.2679
0.23 A 0.9935 0.8891 0.9031 0 8964 0.8963 0.8961 -
A 30.5953  30.6124 30.6127 29 6657 28.8918 28.5949  28.4392
(.30 A 0.9743 0.8378 0.8510 0 8793 0.8790 0.8789 -
Al L1918 31,2584 312599 30 2080 294159 29.1115 28.9531
0,73 A 0.9444 007583 0.7701 (1 8507 ).8503 0.8502 -
AL 321843 323291 323322 319 30.2890 29.9722  29.8093
1.00 A\, 0.9054 0.6584 0.66%6 08105 10.8101 0.8100 —
Al 33,5707 238165 33.8220 323771 31.5108 31.1761 31.0069

TCAT : classical arch theory : TAT. Timoshenko-type arch theory (v = 3 6): M = 11, plane stress in depth
direction (Timoshenko-type arch theory : k* = 1)

(M = 17), since the normal stress ¢ . is made to be zero. the results correspond to those of
the Timoshenko-type arch theory with the shear correction coefficient x* = 1. For small
L. H. although the convergence property of the second buckiing load for the predominantly
axial mode is not so good. the convergence properties of the other quantities are accurate
enough within the present order of approximate theories. In the following tables and figures,
except Figs 3(a.b). absolute values of the buckling loads are shown.

The first two natural frequencies of shallow circular arches with moderately small
length-to-depth ratio L H = 20 are compared directly with the previously published
results (Qatu, 1992) in Table 2(a). The form of dimensionless natural frequencies in
the table is different from that of the first equation in eqn (23), 1.e.
Q =wl’ (12p EH).Q, = oL (p E). Since the effects of shear deformation and rotary
inertia are neglected and only the stretching-bending coupling due to curvature has been
considered in Qatu’s results. slight differences of natural frequencies from the present results

Table 2¢a). Comparison of the first two nutural trequencies with previously published results © effects of the
thickness parameter (1. F/{ = 2(0)

Displacement mode @ ¢

LR QO [ 2 3 4 5

0.00 Q. Y 8696 9 47x 8X.&20 157.91 — 246.74 ~
Q. 98293 RERER 887303 148 6440 225.3584
Q. 1416 628232 PEREN 12.566 - 15.708 —
Q. 31413 6.2%0% Y 4168 12.5470 15.6694
0.20 Q. 9.8496 39 454 8R.800 157.89 - 246.72 ~
Q. 9 8094 188288 NS 7R3 148.6255 225.3405
Q, 31480 6.2864 94269 12,568 — 15.709 —
Q., 21477 0.2840 9.4189 12,5486 15.6706
0.50 0, 9.7466 39353 88,694 157 78 - 246.60 —
Q. 97041 37236 83,6306 14% 5279 225.2465
Q. 30812 6.3032 9.4383 12,576 — 15.716 —
Q. 31808 6.3006 9 4299 12.5568 15.6770
1.00 Q. 9.4038 3RIR3- 88324 157.39— 246.21—
Q. 93184 383548 83.2698 1481786 224.9102
Q., 22972 6.3629 9 4786 12.607 - 15.741 —
Q. 3.2964 6.3593 9.4690) 12,3859 15.7000

O and Q. Qatw’s results (1992) Q,,, and Q... present results (M = 3) ; dimensionless frequencies,
Q=L (12p EH).Qs = ol (p £,
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Table 2(b). Comparison of the first two natural frequencies with previously published results : effects of the
curvature parameter (L/R = 1.0)

Displacement mode : r

LH Q: 1 2 3 4 5

5 Qi 8.0874 32.122- 63.760 — 98.806 — —
Q. 88119 31.9473 61.7087 94.1744 127.6434

10 (OJ 8.3546 36.153 - 78.546 — 131.57— —
Q. 9.2083 36.6930 77.9959 128.9675 186.3153

20 Qo 8.4270 37.504 — 84.790 — 148.58 — —
Q. 9.3184 38.3548 85.2698 148.1786 224.9102

50 Q. §.4478 37.919 - 86.909 — 155.06 — —
Q. 9.3502 38.8734 87.8083 155.7889 2423119

100 Q. $.4508 37.980 - 87.229 — 155.07— —
Q. 9.3547 38.9497 88.1948 157.0009 245.2352

Q. Qatu’s results (1993) ; Q.. present results (M = 5) ; dimensionless frequencies, ), = wL*/(12p/EH?).

are noticed. For the case of larger length-to-depth ratio L/H = 100, the difference of natural
frequencies becomes smaller.

In Table 2(b), a similar comparison of the lowest natural frequency Q, of shallow
circular arches with the largest length-to-radius of curvature ratio L/R = 1.0 is also made
with Qatu’s results (1993) which were obtained by using moderately thick deep beam
theory. Although the difference between shallow and deep beam theories is small for higher
frequencies, a considerable difference for the fundamental frequency (r = 1) is noticed. For
shallower cases of L/R « 1, this difference in natural frequencies becomes smaller. It may
be said that the effect of the curvature parameter L/R is much more than that of the
thickness parameter L/H upon the fundamental frequency.

5.3. Natural frequencies of shallow circular arches without axial forces

The first two natural frequencies obtained by the present analysis are shown in Table
3 for all the values of L/H and the first three displacement modes. The results are obtained
for M = 5 with sufficient numerical accuracy and can be regarded as the benchmark data
of natural frequencies of shallow circular arches with small L/H. Natural frequencies
increase monotonically with increasing number of displacement modes.

5.4. Buckling loads of shallow circular arches subjected to axial forces

For a simply supported arch with axial compressive force, Figs 2(a,b) show the
variation of the buckling loads with respect to displacement modes. The lower curve with
the open circle shows the buckling loads for a predominantly bending mode with some
shear deformation, whereas the upper curve with the open square shows those for a
predominantly axial mode. As shown in Figs 2(a,b), the buckling loads for a predominantly
axial mode decrease monotonically from those for » = 1 and then increase slightly. The
lower buckling loads for a predominantly bending mode increase within lower displacement
modes but decrease with higher displacement modes.

The buckling loads for the first three displacement modes and a higher displacement
mode r = 500 are also shown in Table 4 for all values of L/H. The results are obtained for
M = 5 with sufficient numerical accuracy and can be regarded as the benchmark data of
buckling loads of shallow circular arches with small L/ H. It is seen that the first displacement
mode gives the critical buckling load for large L/H. However, for small L/H the critical
buckling load does not correspond to lower displacement modes but to higher ones (for
instance. r = 500). For this feature, limit points of the length-to-depth ratio L/H = 3.191
to 2.980 according to the length-to-radius of curvature ratio L/R = 0.0 to 1.0 appear in the
present examples. The buckling loads of shallow circular arches for higher displacement
modes approach those of straight beams.
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Displacement mode: r

Displacement mode : r

LiH LR Q 1 2 3 LH LR Q 1 2 3

1 0.00 Q 2.3791 54910 8.5122 5000 Q 0.1730  0.6021 1.1546

Q, 4.4428  6.3092 88123 Q. 1.0116 20122 29792

0.05 Q 23790 54913 8.5127 n2s Q 0.1724  0.6017 1.1543

Q, 44425  6.3091 88127 Q. 1.0147 20136 2.9799

010 23785 54918 85132 00 Q 0.1708  0.6003 1.1532

Q. 44414  6.3087  8.8139 Q. 1.0240  2.0179  2.9821

0.15  Q 23777 5.4926 8.5139 0,78 Q 0.1680 0.5980 1.1514

Q, 44396  6.3082  8.8159 Q. 1.0394  2.0251 2.9858

020 Q 23766 54935 85147 100 Q, 0.1641  0.5948 1.1490

Q, 4.4371 6.3074  8.81%6 Q. 1.0606  2.0350  2.9909

2 000 Q 0.8680  2.3791 39447 10 000 Q 0.0452  0.1730  0.3651

Q, 25024 44428 53022 Q. 0.5064 1.0116 1.5142

010  Q, 0.8685 23790  3.944% 025 Q 0.0451  0.1728  0.3649

Q, 25034 44425 53019 Q. 0.5080 1.0124 1.5147

020 Q 0.8673 23785  3.9449 050  Q 0.0446  0.1724  0.3646

Q, 2.5065 44414 53009 Q. 0.5127 1.0147 1.5162

030 Q 0.8652 23777  1.945] 0.7 Q) 0.0439  0.1718  0.3639

Q, 25118 44396 52992 Q. 0.5205 1.0186 1.5187

040 Q 0.8624 23766  3.9453 100 Q, 0.0429  0.1708  0.3631

Q, 25190 4.4371 5.2969 Q. 0.5313 1.0240 1.5222

4 000 Q 0.2622  0.8689 1.6042 20 000 Q 0.0114  0.0452  0.0998

Q. 1.2633  2.5024  3.6443 Q. 0.2533  0.5064  0.7592

020 Q 0.2617 0.8685 1.6039 025 Q 00114 0.0452 0.0998

Q, 1.2658 25034 3.6446 Q. (0.2541  0.5068  0.7595

040 0.2602  0.8672 1.6031 030 Q 0.0113  0.045] 0.0996

Q. 1.2732 25065  3.645% Q. 0.2564  0.5080  0.7603

0.60 Q, 0.2575  0.8652 1.6017 073 Q 0.0111  0.0449  0.0995

Q, 1.2854 25118 3.6469 Q. 0.2604  0.5100  0.7616

0.80 Q 0.2537  0.8624  1.599% Lo Q, 0.0108  0.0446  0.0992

Q, 1.3023 25190 3.0489 Q. 0.2658  0.5127  0.7634

Table 4. The first two buckling loads of a shallow circular arch
Displacement mode : » Displacement mode : »

L/H L/R A 1 2 3 300 LHILR 1 2 3 500
1 0.00 A, 02517  0.2348  0.1808  0.0772 5 000 A, 0.9018 27789  4.4881 1.9422
A, 05086 0.3183  0.2655  0.2206 A 282679 23.5599  18.8480  5.5106
0.05 A, 02517  0.2347  0.1808  0.0772 0.25 A 0.8961 27746 44854 1.9422
A, 0.5087  0.3182  (.2655 0.2206 A. 28.4392 235921  18.8581 5.5106
0.10 A, 0.2516  0.2347  0.1808 0.0772 0.50 A 0.8789  2.7618  4.4773 1.9422
A, 05088  0.3182  0.2654  0.2206 A, 289531 2368838 18.8883  5.5106
0.15 A, 0.2514  0.2346  0.1808 0.0772 0.75 A 0.8502  2.7404  4.4636 19422
A, 05092 03181 0.2653  0.2206 A, 29.8093  23.8500 18.9388  5.5106
0.20 A, 0.2511 0.2345 0.1808  0.0772 .00 A 0.8099 2.7104 4.4444 1.9422
A, 05112 03190 0.2658  0.2206 A- 310069 240758  19.0096  5.5106
2 000 A 05912 1.0069 1.0414  0.3092 10 0.00 A 0.9736  3.6073  7.2239  7.8886
A, 3.3758 2.0344 1.5048  0.8823 A- 1193187 113.0715 104.2018  21.9992
0.10 A, 0.5906 1.0068 10413 0.3092 0.25 A, 0.9674  3.6015  7.2189  7.8885
A, 33785  2.0346 1.5048  0.8823 A- 1200656 113.2429 1042688  21.9992
020 A, 0.5889 1.0063 1.0410  0.3092 0.50 A, (0.9488  3.5843  7.2037  7.8885
A, 3.3869 2.0354 1.5047  0.8823 AL 1223062 113.7569 104.4697  21.9992
030 A, 0.5862 1.0055 1.0406  0.3092 0.75 A, 09179 3.5857 7.1784  7.8884
A, 34008  2.0366 1.5047  0.8823 A- 126.0398 114.6136 104.8045 21.9992
0.40 A, 0.5823 1.0044 10399  0.3092 100 A, 0.8747 35155 7.1429  7.8884
A, 34203 20384 1.5047  0.8823 A- 131.2652 1158124 105.2733  21.9992
4  0.00 A, 08544 23646 34613 1.2404 20 0.00 A, 0.9933 38942 84813 328711
A, 17.4185 135031 10.2537  3.53279 A 484.0376 477.2748 466.4784  §7.7299
020 A, 0.8510 23624 34602  1.2404 0.25 A, 0.9870  3.8881  8.4753 32.8709
A, 17.4846 13.5142 10.2568  3.5279 \. 487.0938 478.0217 466.7983 87.7299
0.40 A, 0.8405 23558  3.4567  1.2404 (.50 A, 0.9681 3.8695  8.4573  32.8706
A; 17.6829 13.5475 10.2662  3.5279 A- 496.2623 480.2625 467.7584  87.7299
0.60 A, 0.8232 23447 34508 40221 0.75 A, 0.9366  3.8386 84274 32.8704
A; 180132 13.6032 10.2817  3.5279 A= 511.5424 483.9969 469.3584 87.7298
080 A, 0.7988  2.329] 34424 1.2404 10O A, 08926 37954  §.3854 32.8703
A, 184755 13.6812  10.3036 32,5279 A. 5329327 489.2248 471.5982 87.7298
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5.5. Natural frequencies of shallow circular arches subjected to initial axial forces

The first two natural frequencies of shallow circular arches subjected to axial forces
are plotted with respect to the initial axial forces in Figs 3(a,b). The figures show the effects
of initial axial forces on the frequency curves for r = 1. When the natural frequencies go to
zero, the initial axial forces reduce to the buckling loads of the arch.

6. DISCUSSION AND CONCLUSIONS

Beyond the limits of applicability of the existing arch theories, various orders of the
expanded approximate theories have been applied to analyse the in-plane vibration and
stability problems of a simply supported shallow circular arch with small L/H and
sufficiently small H; R subjected to axial force.

The following conclusions may be drawn from the present analysis.
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(1) In order to verify the accuracy of the present results, convergence properties of
the numerical solutions according to the order of approximate theories are examined.
Convergence properties of the first two natural frequencies and buckling loads for a simply
supported shallow circular arch without axial force are examined in detail. An estimation
of the approximate order of the governing equations may be concluded according to L/H
of the arch. The present results obtained for M = 5 are considered to be accurate enough
for arches with small L. H and can be regarded as the benchmark data of the problem.

[t is found that the one-dimensional higher-order arch theory in the present paper can
predict the natural frequencies and buckling loads of a shallow circular arch with small
L/H and sufficiently small H'R more accurately when compared with previously published
results.

(2) The first two natural frequencies of a simply supported shallow circular arch
subjected to axial tensile and/or compressive forces have been obtained for all values of
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L/H and several displacement modes. The first two natural frequencies of shallow circular
arches subjected to axial forces are also plotted against the initial axial forces for the first
displacement mode. When the natural frequencies go to zero, the initial axial forces reduce
to the buckling loads of the arch.

For arches with the length-to-depth ratio L H larger than a specific value of about
3.19, the critical buckling load appears at the first displacement mode r = 1. However, for
arches with smaller L/H, lower buckling loads appear at higher displacement modes.

(3) The present one-dimensional approximate theories may require a larger value of
M for shallow arches with smaller values of L/H to ensure the numerical accuracy of the
results. For the present range of L/H, reasonably accurate numerical solutions are obtained
for M = 2-5. It can be said that the present one-dimensional higher-order arch theory,
which can take into account the effects of both shear deformations with depth changes and
rotary inertia, is very effective for the in-plane vibration and stability analyses of a shallow
circular arch as an extended theory of the Timoshenko-type arch theory and the classical
arch theory.
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